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In this work, a model of focused laser differential interferometry (FLDI) is derived by incorporating the local

intensity of each beam in an FLDI beam pair. We rederive some known transfer functions to reduce FLDI data.

Additional transfer functions are also derived, intended to model increasingly complex disturbance fields, namely,

isotropic turbulence. The new transfer functions account for disturbances not only in the streamwise direction but

also in the two spanwise directions. Additionally, it is shown that strategically selecting the integration limits for the

idealizedFLDI in the denominator of the transfer functions (dϕ∕dx) can simplify theFLDIdata-reductionprocedure.

This is done for disturbance fields in a finite boundary (e.g., a wind tunnel of scale �L), by removing the need to

characterize the FLDI probe-volume length scale. Finally, results are presented from experiments performed with a

turbulent jet probed by an FLDI that indicate that increasing the complexity of the transfer function has merit with

some qualifications.

Nomenclature

cp = phase speed, m∕s
E11ρ = energy spectra of density fluctuations, m�kg∕m3�2
f = frequency, Hz
I�x; y; z� = intensity of beam along its propagation axis,W∕m2

ID = intensity at the detector face, W∕m2

K = Gladstone–Dale constant
L = length scale, m
Lp = characteristic length of the focused laser differential

interferometry probe volume, m
n�x; y; z� = index of refraction of the flowfield
OPL = optical path length, m
R11ρ = autocorrelation function

VD = voltage response of photodetector, V
w�z� = 1∕e2 radius of beam varying along its propagation

axis, m
w0 = beam waist radius at the point of best focus, m
z0 = location of jet, m
Δx = beam spacing, m
Δϕ = phase change
η = Kolmogorov length scale, m
κ = wavenumber, 1∕m
λ = wavelength of the laser, m
ρ = local density, kg∕m3

σ = width of jet at measurement point, m

I. Introduction

F OCUSED laser differential interferometry (FLDI) is a non-
particle-based, optical diagnostic technique pioneered by

Smeets and George [1–7] in the 1970s. Smeets and George demon-
strated the use of FLDI for measurements of a density profilewithin a
shock front and unsteady boundary layers, and, amongst other things,
developed an eight-beam-pair FLDI setup to examine the flowfield
around a blunt cone. From the 1970s to the 2000s, other researchers
have used laser differential interferometry (LDI) to make measure-
ments in high-speed flows [8–17]. In the early 2010s, Parziale et al.

[18–24] used the FLDI technique to characterize facility disturbance
level and boundary-layer instability and transition in the Caltech T5
reflected-shock tunnel. More recently, researchers from several
groups have made additional advancements, including making reli-
able convective velocity measurements between two closely spaced
FLDI probe volumes [25–34], facility disturbance-level characteri-
zation [35–37], rigor in design [38], and novel beam shaping tech-
niques for application in hard-to-access flows [39–47].
Quantitative density-fluctuation data may be obtained by applying

data-reduction strategies to raw FLDI signals. The most popular of
these strategies is to transform the FLDI data into frequency space
and apply so-called “transfer functions” that account for geometric
optics and the characteristics of the probed disturbance field [48–50].
Parziale et al. [23] considered the differencing nature of the FLDI
instrument to correct freestream disturbance spectra. Since then,
data-reduction strategies by Fulghum [48], Settles and Fulghum
[49], and Schmidt and Shepherd [50] have been applied to jet experi-
ments to account for geometric optics as well as the differencing
nature of the FLDI instrument. Ceruzzi et al. [27–29] have furthered
these efforts and applied these transfer functions to assess the noise
level in high-speed facilities. Finally, this strategy of transforming
FLDI data to frequency space and applying transfer functions has
been tested and evaluated by using controlled problems devised by
researchers [51–55].
In this paper, a derivation of the FLDI response is proposed that

accounts for the variation of intensity of the beamprofile in the phase-
change relation. A methodology for developing new transfer func-
tions for the FLDI instrument is proposed, and its fidelity is tested by
reproducing transfer functions familiar in the FLDI literature. This
process is then used to produce new transfer functions for more
general disturbance fields, namely, isotropic turbulence. Finally,
these transfer functions are applied to the measured FLDI response
as the instrument probes a turbulent jet flow.

II. Model of the FLDI and Relation to Voltage Output

In an FLDI system, two beams traverse closely spaced paths (in
this case, the z direction; see Fig. 1), are mixed with a polarization
optic, and are then registered at a photodetector. Thevoltage response
from the photodetector,VD, is the integrated intensity over the sensor
face:

VD � �IDRSRL � RSRL

Z
AS

ID�x; y� dA (1)

where ID�x; y�, �ID,RS,RL, andAS are the intensity at the detector face,
integrated intensity, the responsivity of the photodetector, the load
resistance, and the sensor area, respectively. At the photodetector face,
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the intensity of the optical signal generated by the FLDI beams can be

related to the phase change as

�ID � �I1 � �I2 � 2

���������
�I1 �I2

q
cos�Δϕ� (2)

where �I1 and �I2 are the integrated intensity of each FLDI beam.

Assuming �I1 � �I2 � �I0∕2, where �I0 is the initial intensity of the beam
at the outlet of the laser, and shifting the instrument by π∕2 to themiddle

of a fringe, Eq. (2) reduces to

�ID � �I0 � �I0 sin�Δϕ� (3)

Following Eq. (1), the voltage measured by the photodetector when the

instrument is at themiddle of a fringe isV0 � �I0RSRL. Equation (3) can

then be rewritten to relate the voltage response to the phase change as

Δϕ � sin−1
�
VD − V0

V0

�
(4)

Having related the voltage and phase change, the aim is now to

relate density disturbance to phase change. As a density disturbance

field passes through the FLDI beams, these closely spaced beams

traverse different optical path lengths (OPLs). This difference in

OPLs results in a phase difference between the beams of the FLDI

instrument, which is expressed as

Δϕ� 2π

λ
�OPL1 −OPL2� �

2π

λ

�Z
s1

n�x; y; z�dz−
Z
s2

n�x; y; z�dz
�

(5)

where n�x; y; z� is the index of refraction of the flowfield, λ is the

wavelength of the laser, and s1 and s2 are the paths of the two FLDI
beams. However, in practice, the voltage change measured by the

photodetector is also dependent on the local intensity. For an FLDI

instrument, thismeans that changes in indexof refraction that occur at

higher levels of intensity contribute more to the phase difference

measured by the photodetector, and so the spatial distribution of

intensity must be accounted for. As in Fig. 1, each FLDI beam is

displaced from the origin along the ordinate by half the beam spacing,

Δx, as I�x� �Δx∕2�; y; z�. Mathematically, the change in phase is

modified by introducing the local intensity of each beam into Eq. (5)

via multiplication by A1 � A2 � 1 as

Δϕ � 2π

λ

�
A1

Z
s1

n�x; y; z� dz − A2

Z
s2

n�x; y; z� dz
�

(6)

where

A1 �
�RR∞

−∞I�x − Δx
2
; y; z� dx dyRR∞

−∞I�x − Δx
2
; y; z� dx dy

�

A2 �
�RR∞

−∞I�x� Δx
2
; y; z� dx dyRR∞

−∞I�x� Δx
2
; y; z� dx dy

�

To model the beam intensity, we assume a Gaussian beam profile
given by

I�x; y; z� � 2

w�z�2π exp
�
−2�x2 � y2�

w�z�2
�

(7)

where w�z� is the 1∕e2 radius of the beam varying along its propa-
gation axis, z, and is given by

w�z� �
��������������������������������������
w2

0

�
1�

�
λz

πw2
0

�
2
�s

(8)

where w0 is the beam waist radius at the point of best focus. For a

Gaussian beam, ∫∫ ∞
−∞I�x� Δx∕2; y; z� dx dy � 1 for any z. Addi-

tionally, it is assumed that the integration bounds in z are equal as
s1 � s2 � s.With these assumptions, Eq. (6) is rewritten by bringing
the local intensity into each line integral as

Δϕ � 2π

λ

�ZZ
∞

−∞

Z
s
I

�
x −

Δx
2

; y; z

�
n�x; y; z� dz dx dy

−
ZZ

∞

−∞

Z
s
I

�
x� Δx

2
; y; z

�
n�x; y; z� dz dx dy

�
(9)

Next, the Gladstone–Dale relation, n � Kρ� 1, is used to relate
the local index of refraction to the local density. Here, K is the
Gladstone–Dale constant and ρ is the local density. Inserting the
Gladstone–Dale relation into Eq. (9) and dividing by the beam
spacing yields

Δϕ
Δx

� 2πK

Δxλ

�ZZ
∞

−∞

Z
s
I

�
x −

Δx
2

; y; z

�
ρ�x; y; z� dz dx dy

−
ZZ

∞

−∞

Z
s
I

�
x � Δx

2
; y; z

�
ρ�x; y; z� dz dx dy

�

� 2πK

Δxλ

�ZZ
∞

−∞

Z
s

�
I

�
x −

Δx
2

; y; z

�
ρ�x; y; z�

− I

�
x � Δx

2
; y; z

�
ρ�x; y; z�

�
dz dx dy

�

� 2πK

Δxλ

�ZZ
∞

−∞

Z
s
ρ�x; y; z�

�
I

�
x −

Δx
2

; y; z

�

− I

�
x � Δx

2
; y; z

��
dz dx dy (10)

In the following sections, the second and third lines of Eq. (10)will
be used to calculate ρ�x; y; z� in frequency space, given I�x; y; z� and
some knowledge of the flowfield.

III. Relation of Discrete Phase Change to Differential
Phase Change via Transfer Function

In this section, the discrete phase changemeasured byFLDIwill be
related to a hypothetical, idealized differential FLDI response via
transfer functions for the purpose of finding an expression for the
density spectrum. Similar to [49,50], to model this hypothetical,
idealized FLDI, the separation distance between the beams is reduced
to a small value as

∂ϕ
∂x

� lim
Δx→0

Δϕ
Δx

(11)
Fig. 1 Representation of FLDI beam pairs at spatial origin.
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Substituting the first line of Eq. (10) into equation Eq. (11) for

Δϕ∕Δx, we get

∂ϕ
∂x

� lim
Δx→0

�
2πK

λΔx

�ZZ
∞

−∞

Z
s
I

�
x −

Δx
2

; y; z

�
ρ�x; y; z� dz dx dy

−
ZZ

∞

−∞

Z
s
I

�
x� Δx

2
; y; z

�
ρ�x; y; z� dz dx dy

��
(12)

which reduces to

∂ϕ
∂x

� 2πK

λ

�ZZ
∞

−∞

Z
s
I�x; y; z�

×
�
lim
Δx→0

ρ�x� �Δx∕2�; y; z� − ρ�x − �Δx∕2�; y; z�
Δx

�
dz dx dy

�

� 2πK

λ

�ZZ
∞

−∞

Z
s
I�x; y; z� ∂ρ

∂x
dz dx dy

�
(13)

Now, we define the nature of an idealized FLDI instrument by

asserting that ∂ρ∕∂x is evaluated at the instrument’s focus as

∂ρ�x; y; z�
∂x

≡
∂ρ�x; y; z�

∂x

����
x;y;z�0

� ∂ρ
∂x

(14)

so it is no longer a function of space, and we note that
RR∞

−∞I�x;y;z�
dxdy�1. We can then write

∂ϕ
∂x

� 2πK

λ

∂ρ
∂x

�Z
s

ZZ
∞

−∞
I�x; y; z� dx dy dz

�
� 2πK

λ

∂ρ
∂x

Z
s
dz (15)

The path integration in Eq. (15) introduces a length scale over which

the FLDI response is averaged. Here, we approximate the integration

length to be equal to the characteristic length of the FLDI probe

volume, LP,

∂ϕ
∂x

� 2πKLP

λ

∂ρ
∂x

(16)

A spectral analysis of the results is typically of interest, so we solve

for ∂ρ∕∂x and take the spatial Fourier transform of Eq. (16), as

F
�
∂ρ
∂x

	
� λ

2πKLP

F
�
∂ϕ
∂x

	
(17)

We compute the Fourier transform of the density using the derivative

property of the Fourier transform (Ff∂ρ∕∂xg � iκFfρg), transform-

ing from physical space to wavenumber (κ) space as

Ffρg � P�κ� � λ

2πiκKLp

F
�
∂ϕ
∂x

	
(18)

In Eq. (19), we define a system transfer function of the FLDI instru-

ment as the ratio of the measured instrument output at the detector to

the expected instrument output of an ideal FLDI instrument confined

to a specification of our choosing within the framework presented

above.

H�κ� ≡ �Δϕ∕Δx�measured

�∂ϕ∕∂x�ideal
(19)

Using the definition of the transfer function,H�κ�we relate the output
of the instrument to the first derivative of the phase field. Solving for

the derivative of the phase change in Eq. (19), we can make a

substitution into Eq. (18) to obtain a relationship in wavenumber

space between the measured fluctuations in phase to the actual

density fluctuations as

Ffρg � P�κ� � λ

2πiκKLPΔx
FfΔϕg
H�κ� � λ

2πiκKLPΔx
Φ�κ�
H�κ� (20)

where Φ�κ� � FfΔϕg. In the following sections, a model of the

flowfield will be assumed to determineH. It is noted that relating the

Fourier transform of density to the phase change in this manner

follows [49,50].

IV. Derivation of Transfer Functions

In this section, the transfer functions introduced by [49,50] will be

rederived with the framework described in the previous sections.

Then, new transfer functions will be introduced that attempt to

capture more general flow disturbances, namely, isotropic turbu-

lence. To first rederive the work in [49,50], we assume a sinusoidal

disturbance in x, uniform in y, and infinitesimally thin in z at z � 0 of
the form

ρ � ρ�x; y; z� � C sin�κx� ϕx�δ�z� (21)

where ϕx is an arbitrary phase shift along the x direction, C is an

arbitrary constant, and δ�z� is the Dirac delta. Substituting the chosen
form of the disturbance into Eq. (10) allows for the evaluation of the

line integral as

Δϕ
Δx

� 2πKC

λΔx

�ZZ
∞

−∞
sin�κx� ϕx�

�
I

�
x −

Δx
2

; y

�

− I

�
x� Δx

2
; y

��
dx dy

�

� 2πKC

λΔx
2 sin

�
κΔx
2

�
exp

�
−
w2

0κ
2

8

�
cos�ϕx� (22)

The integration in Eq. (22) is similar to the sine transform of a

Gaussian, so it is readily computed in Wolfram Mathematica here,

as is similarly done elsewhere in the paper. To evaluate the transfer

function H�κ� for this disturbance, we must first evaluate ∂ϕ∕∂x.
Plugging Eq. (21) into Eq. (15) results in

∂ϕ
∂x

� 2πK

λ

∂ρ
∂x

Z
s
dz � 2πKC

λ
κ cos�κx� ϕx�δ�z�jx;y;z�0

� 2πKC

λ
κ cos�ϕx� (23)

noting that we choose ∫ s dz � 1 to represent the relevant integration

length considered with theDirac delta. The ratio of Eqs. (22) and (23)

is the transfer function

H�κ� � 2

κΔx
sin

�
κΔx
2

�
exp

�
−
w2

0κ
2

8

�
(24)

which we note is Eq. (18) in the work of Schmidt and Shepherd [50].

In that work, they formulate their Eq. (18) by combining two sepa-

rately derived transfer functions, one that accounts for the finite-

differencing effects of FLDI, Hs � 2 sin�κΔx∕2�∕�κΔx� [their

Eq. (17)], and the effects of beam size at best focus, Hw;0 �
exp�−w2

0κ
2∕8� [their Eq. (15)]. Reproducing the result of Schmidt

and Shepherd [50] brings confidence to the methodology of deriving

transfer functions outlined in this work.
Next, a disturbance field over a finite domain of the form

ρ�x; y; z� �
(
C sin�κx� ϕx� −L ≤ z ≤ L

0 otherwise
(25)

is considered (Fig. 2a). Substituting the chosen form of the disturb-

ance into Eq. (10) yields
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Δϕ
Δx

� 2πKC

Δxλ

Z
L

−L

ZZ
∞

−∞
sin�κx� ϕx�

�
I

�
x −

Δx
2

; y; z

�

− I

�
x� Δx

2
; y; z

��
dx dy dz

� 2πKC

Δxλ
2 sin

�
κΔx
2

�
cos�ϕx�

Z
L

−L
exp

�
−
w�z�2κ2

8

�
dz

� 2πKC

Δxλ
2 sin

�
κΔx
2

�
cos�ϕx�

2
���
2

p
π3∕2w0

κλ

× exp

�
−
w2

0κ
2

8

�
erf

�
Lκλ

2
���
2

p
πw0

�
(26)

Plugging Eq. (25) into Eq. (15) results in

∂ϕ
∂x

� 2πK

λ

∂ρ
∂x

Z
s
dz � 2πKC

λ
κ cos�κx� ϕx�jx;y;z�0

Z
L

−L
dz

� 2πKC

λ
2Lκ cos�ϕx� (27)

noting that L is chosen as the bound on the path integral. The ratio of

Eqs. (26) and (27) is the transfer function

H�κ� � 2
���
2

p
π3∕2w0

κ2λΔxL
sin

�
κΔx
2

�
exp

�
−
w2

0κ
2

8

�
erf

�
Lκλ

2
���
2

p
πw0

�
(28)

which is similar to a combination of Eqs. (16) and (17) in thework of

Schmidt and Shepherd [50]. Equation (28) may be used as a transfer
function for disturbances within a wind tunnel with walls from−L to
L. However, assuming that a disturbance has the structure of Eq. (25)

may not be the best representation of a real flowfield as L becomes
large relative to 1∕κ.
Also note that when taking the ratio of Eqs. (26) and (27), it is

arbitrary to choose the integration limits of the idealized FLDI
system as�L in Eq. (27), which results in an L in the denominator

of Eq. (28). That is, for a given disturbance field, we can relate
the phase response of the actual FLDI system [represented by
Eq. (26)] to the phase response of an idealized FLDI system
having an integration length of one’s choosing. One convenient

choice would be −LP to LP, noting that LP is the characteristic
length of the FLDI probe volume in Eq. (20). Equation (28) then
becomes

H�κ��2
���
2

p
π3∕2w0

κ2λΔxLP

sin

�
κΔx
2

�
exp

�
−
w2

0κ
2

8

�
erf

�
Lκλ

2
���
2

p
πw0

�
(29)

Importantly, setting the integration length to be the characteristic

length of the FLDI instrument in Eq. (27) eliminates the need to

characterize LP, as it cancels out in Eq. (20) when it is applied to

reduce FLDI data.
Disturbances of increasingly complex form will now be intro-

duced. First, to model isotropic turbulence with disturbances in x
and y at the focus of the FLDI system, the density is assumed to take

the form

ρ � ρ�x; y; z� � C sin�κx� ϕx� sin�κy� ϕy�δ�z� (30)

Substituting the chosen form of the disturbance into Eq. (10)

yields

Δϕ
Δx

� 2πKC

Δxλ

ZZ
∞

−∞
sin�κx� ϕx� sin�κy� ϕy�

�
I

�
x −

Δx
2

; y; z

�

− I

�
x� Δx

2
; y; z

��
dx dy

� 2πKC

Δxλ
2 sin

�
κΔx
2

�
exp

�
−
w2

0κ
2

4

�
cos�ϕx� sin�ϕy� (31)

Plugging Eq. (30) into Eq. (15) results in

∂ϕ
∂x

� 2πK

λ

∂ρ
∂x

Z
s
dz

� 2πKC

λ
κ cos�κx� ϕx� sin�κy� ϕy�δ�z�jx;y;z�0

� 2πKC

λ
κ cos�ϕx� sin�ϕy� (32)

The ratio of Eqs. (31) and (32) is the transfer function

H�κ� � 2

κΔx
sin

�
κΔx
2

�
exp

�
−
w2

0κ
2

4

�
(33)

noting that the only change between Eqs. (33) and (24) is the factor of

two in the exponential.
Next, consider an isotropic disturbance field (see Fig. 2b) of the

form

ρ�x; y; z� �
(
C sin�κx� ϕx� sin�κy� ϕy� −L ≤ z ≤ L

0 otherwise
(34)

which, following the above process, yields

Fig. 2 Representation of density disturbance fields of the form a) ρ � ρ�x;y;z� � sin�κx� ϕx� and b) ρ � ρ�x;y;z� � sin�κx� ϕx� sin�κy� ϕy�.
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Δϕ
Δx

� 2πKC

Δxλ

Z
L

−L

ZZ
∞

−∞
sin�κx� ϕx� sin�κy� ϕy�

�
I

�
x −

Δx
2

; y; z

�

− I

�
x� Δx

2
; y; z

��
dx dy dz

� 2πKC

Δxλ
2 sin

�
κΔx
2

�
cos�ϕx� sin�ϕy�

Z
L

−L
exp

�
−
w�z�2κ2

4

�
dz

� 2πKC

Δxλ
2 sin

�
κΔx
2

�
cos�ϕx� sin�ϕy�

2π3∕2w0

κλ
exp

�
−
w2

0κ
2

4

�
erf

�
Lκλ

2πw0

�
(35)

Plugging Eq. (34) into Eq. (15) results in

∂ϕ
∂x

�2πK

λ

∂ρ
∂x

Z
s
dz� 2πKC

λ
κcos�κx�ϕx�sin�κy�ϕy�jx;y;z�0

Z
L

−L
dz

�2πKC

λ
2Lκcos�ϕx�sin�ϕy� (36)

and taking the ratio of Eqs. (35) and (36) gives the transfer function

H�κ� � 2π3∕2w0

κ2λΔxL
sin

�
κΔx
2

�
exp

�
−
w2

0κ
2

4

�
erf

�
Lκλ

2πw0

�
(37)

Finally, in terms of considering disturbances within a fixed boun-

daryL, we consider a three-dimensional isotropic disturbance field of

the form

ρ�x;y; z� �
(
C sin�κx�ϕx�sin�κy�ϕy� sin�κz�ϕz� −L≤ z≤ L

0 otherwise

(38)

Plugging this disturbance into the phase change relation yields

Δϕ
Δx

�2πKC

Δxλ

Z
L

−L

ZZ
∞

−∞
sin�κx�ϕx�sin�κy�ϕy�sin�κz

�ϕz�
�
I

�
x−

Δx
2
;y;z

�
−I

�
x�Δx

2
;y;z

��
dxdydz

�2πKC

Δxλ
2sin

�
κΔx
2

�
cos�ϕx�sin�ϕy�

Z
L

−L
sin�κz

�ϕz�exp
�
−
w�z�2κ2

4

�
dz

�2πKC

Δxλ
2sin

�
κΔx
2

�
cos�ϕx�sin�ϕy�sin�ϕz�

iπ3∕2w0

κλ
exp

�
−
w2

0

4

�
κ2�4π2

λ2

��
×
�
erfi

�
πw0

λ
−
iLκλ

2πw0

�
−erfi

�
πw0

λ
� iLκλ

2πw0

��
(39)

noting that erf and erfi are the error function and imaginary error

function, respectively. Following the same procedure that was used to

obtain Eq. (37), the transfer function for this disturbance field is

H�κ� � iπ3∕2w0

κ2λΔxL
exp

�
−
w2

0

4

�
κ2 � 4π2

λ2

��
sin

�
κΔx
2

��
erfi

�
πw0

λ

−
iLκλ

2πw0

�
− erfi

�
πw0

λ
� iLκλ

2πw0

��
(40)

This expression is simplified using the identities i × erfi�z� �
erf�i × z�, erf�−z� � −erf�z�, and 2R�erf�x� i × y�� � erf�x�
i × y� � erf�x − i × y� with x � Lκλ∕2πw0 and y � πw0∕λ. With

this, Eq. (40) becomes

H�κ� � π3∕2w0

κ2λΔxL
exp

�
−
w2

0

4

�
κ2

� 4π2

λ2

��
sin

�
κΔx
2

��
2R

�
erf

�
iπw0

λ
� Lκλ

2πw0

���
(41)

Note that the L in the denominator in Eq. (37) or Eq. (41) could be

written as LP, as shown in Eq. (29).
As an alternative to considering disturbances within a fixed boun-

dary,L, we can assume a sinusoidal disturbance in x, with a Gaussian
width σ as

ρ � ρ�x; y; z� � C sin�κx� ϕx� exp
�
−
y2 � z2

σ2

�
(42)

This model may be useful to determine the response of an FLDI

system to a axisymmetric turbulent jet of width σ issuing in the x
direction centered at y � z � 0. Plugging this form of the disturb-

ance into the phase-change relation, we get

Δϕ
Δx

�2πKC

Δxλ

Z
∞

−∞

Z Z
∞

−∞
sin�κx�ϕx�exp

�
−
y2�z2

σ2

��
I

�
x−

Δx
2
;y;z

�

−I
�
x�Δx

2
;y;z

��
dxdydz

�2πKC

Δxλ
2sin

�
κΔx
2

�
cos�ϕx�

Z
∞

−∞

1��������������������������������
�w�z�2∕2σ2��1

p exp

�
−
w�z�2κ2

8

�
exp

�
−z2

σ2

�
dz;

�2πKC

Δxλ
2sin

�
κΔx
2

�
cos�ϕx�

Z
∞

−∞
exp

�
−
w�z�2κ2

8

�
exp

�
−z2

σ2

�
dz;

�2πKC

Δxλ
2sin

�
κΔx
2

�
cos�ϕx�

4π3∕2exp�−�1∕8�κ2w2
0������������������������������������������������

�κ2λ2∕2w2
0���4π2∕σ2�

p (43)

To make the integration in z on the second line of Eq. (43) tractable,
we assume that the jet width is much larger than the beam waist,

σ ≫ w�z�. Plugging Eq. (42) into Eq. (15) results in

∂ϕ
∂x

�2πK

λ

∂ρ
∂x

Z
s
dz

�2πKC

λ
κcos�κx�ϕx�exp

�
−
y2�z2

σ2

�����
x;y;z�0

Z
σ

−σ
dz

�2πKC

λ
2σκcos�ϕx�

(44)

and taking the ratio of Eqs. (42–44), the transfer function is

H�κ� � 2π3∕2 sin�κΔx∕2� exp�−�1∕8�κ2w2
0�

σκΔx
�������������������������������������������������
�κ2λ2∕2w2

0� � �4π2∕σ2�
p (45)

For an increasingly complex disturbance in x and y with a Gaussian
width σ as

ρ � ρ�x; y; z� � C sin�κx� ϕx� sin�κy� ϕy� exp
�
−
y2 � z2

σ2

�
(46)

yields

H�κ� � 2π3∕2 sin�κΔx∕2� exp�−�1∕4�κ2w2
0�

σκΔx
�������������������������������������������������
�κ2λ2∕2w2

0� � �4π2∕σ2�
p (47)

following the above procedure and assumptions. Finally, assuming a

disturbance of the form
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ρ� ρ�x;y;z�

�Csin�κx�ϕx�sin�κy�ϕy�sin�κz�ϕz�exp
�
−
y2� z2

σ2

�
(48)

yields

H�κ��
2π3∕2sin�κΔx∕2�exp

n
−�1∕4�w2

0κ
2
h
1��4π2σ2∕�4π2w2

0�κ2λ2σ2��
io

κΔxσ
�������������������������������������
κ2λ2∕w2

0�4π2∕σ2
p

(49)

For each of the transfer functions pertaining to the axisymmetric jet,
Eqs. (45), (47), and (49), the FLDI user must acknowledge that one is
integrating and averaging through the spanwise structure of the jet in
the z direction.

V. Experimental Setup

An FLDI setup was constructed to probe a turbulent jet. To con-
struct the FLDI system, the linearly polarized laser beamproduced by
a Cobolt 05-01 series laser is expanded using a diverging lens. The
expanding beam is then passed through the two available diffractive
optics to generate a grid of beams six columnswide in the streamwise
x direction and two rows tall in the y direction. The collection of
beams is then circularly polarized by a quarter-wave plate before
being split once more in the streamwise direction by a Wollaston
prism. Wollaston prisms of three different separation angles were
used for these experiments: 0.5 arcminute, 1 arcminute, and 2 arcmi-
nutes. The 12 orthogonally polarized beam pairs probe the jet exit
flow. The beam pairs generated by the upbeam Wollaston prism are
recombined by a Wollaston prism of equivalent separation angle on
the downbeam side. The interference caused by the individual beams
within each beam pair traversing different OPLs is manifested as
fluctuations in the intensity of the recombined beams and measured
as changes in voltage by photodetectors. For these experiments,
measurements from2 of the 12 beampairs are presented.A schematic
of the setup is presented in Fig. 3.

A picture of the beam inter- and intraspacing generated using a 2-
arcminute Wollaston prism is presented in Fig. 4. The beam inter-
spacing was 1.639 mm, and the beam intraspacing was 262.53 μm.
The beam interspacing did not change appreciably for the other
Wollaston prisms used in this experimental campaign. The beam
intraspacing using the 1-arcminute Wollaston prism was 85.20 μm,
and the intraspacing using the 0.5-arcminute Wollaston prism
was 36.34 μm.
A round, sonic free-jet was used to generate the turbulent disturb-

ance field being probed by the FLDI beams. The free-jet was gen-
erated in a laboratory setting. Compressed air was regulated to
approximately 30 PSIG in the reservoir of a nozzle with an exit
diameter of 3.7 mm. The nozzle was mounted on a platform that
allowed for independent and precise adjustment in the x, y, and z
directions. For these experiments, the nozzle was positioned at the
focus (z � 0), 43mm (x∕D � 11.6) away from the FLDI beampairs.

VI. Results

Results from the experiments are presented in this section. First, a
temporal correlation between the two closely spaced FLDI probes
yields the dispersion relation, κ � 2πf∕cp�f�. The phase speed
cp�f� was determined following a procedure similar to the one

described by Ceruzzi et al. [56]. For these experiments, an inverse
tangent function provided the most natural fit to the discretely
calculated convective velocities and resulted in a functional relation-
ship of the data points. Figure 5 shows the dispersion relation fits for
convective velocities measured with a 0.5-, 1-, and 2-arcminute
Wollaston prism. It demonstrates the dependency between the dis-
turbance convective velocity and the frequency. That is, the disturb-
ances propagating at higher convective velocities tend to fluctuate at
higher frequencies. For this flowfield, the similarity between the
dispersion relations generated using the three Wollaston prisms also
demonstrates the independency of the measured dispersion to the
optical setup.
Figure 6 shows the transfer functions for the experiment using a

0.5-arcminute Wollaston prism. For the current experiments, the
length scale in the transfer function (2L or σ) is relatively small, and
so the transfer function modifies the spectrum most at relatively
high wavenumber. The transfer functions of three-dimensional

Fig. 3 Schematic of FLDI setup used to probe the exit of a turbulent jet.

Fig. 4 FLDI beam pairs for a setup developed using diffractive optics and a 2-arcminuteWollaston prism. Themajor tick marks are at 100 μm, and the
minor tick marks are at 50 μm.
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disturbance fields [Eqs. (41) and (49)] suffer from a steep drop in

magnitude at a much earlier than expected value of κ1η, and are not

presented in this figure. Their poor behavior most likely stems from
the assumption that the disturbances are perfectly correlated along the

z direction. We will continue to investigate these transfer functions

and will present our findings in future work. Although the disturb-

ances in x and y are also not perfectly correlated, as the simpler one-

dimensional and two-dimensional transfer functions assume, the
ratio of the disturbance length scale to the integration length is less

problematic. That is, 1∕κ is closer in length scale to the beam waist

w�z� (for x and y integration) than it is toL (for z integration). This is
an apparent limitation of the present approach where we have

assumed that disturbances are isotropic and perfectly correlated in
all directions.
Here, the one-dimensional energy spectra of the density fluctua-

tions are defined to be the one-dimensional Fourier transform of the

autocorrelation function, R11ρ�x�, analogous to the energy spectrum
formed from velocity fluctuations in the work of Pope [57]. Unfortu-
nately, the autocorrelation function in x space is not directly available
from FLDI data because of the presence of dispersion (Fig. 5); that is,

Taylor’s hypothesis may not be applicable in the present jet experi-

ments. Additionally, the FLDI spectra need to be analyzed in wave-

number space so that the transfer functions may be applied. The
Wiener–Khinchin theorem provides a direct relationship between the

Fourier transform of the density fluctuations to the autocorrelation

function, and it is used to write the energy spectra of the density

fluctuations as

E11ρ�κ1� � FfR11ρ�x�g � Ffρ�x�gFfρ�x�g	 � P�κ�P�κ�	 (50)

where the asterisk (	) denotes the complex conjugate and P�κ� is the
discrete Fourier spectrum of density fluctuations per Eq. (20) as

calculated with the “fft” function in MATLAB. Note that the transfer

function alters the energy spectra as E11�κ� ∼H�κ�−2. One can

calculate E11ρ from built-in power-spectral density (PSD) estimation

functions inMATLAB, for example, but the researchermust take care

when considering the units; factors of 2,π, and the period of the signal
may appear unintentionally when using built-in PSD functions,

which will make the amplitude different from Eq. (50). A standard

check is to compute ρ2 � ∫E11ρ�κ1� dκ for different processing

methods to build confidence in the results.
Results for the experiment with a 0.5-arcminute Wollaston prism

are presented in Fig. 7. The figure shows the response of one of the

FLDI beams in the dual-FLDI beam pair, corrected by the transfer

functions corresponding to the disturbance fields as labeled. The

spectra are offset by a multiple of two from one another along the

ordinate for clarity. The model spectrum labeled E11�κ1� in Fig. 7 is
the one-dimensional turbulence spectrum given by

E11�κ1� �
Z

∞

κ1

E�κ�
κ

�
1 −

κ21
κ2

�
dκ

from Pope [57]. The results indicate that, as the complexity of the

modeled disturbance better matches the actual disturbance field, the

corrected one-dimensional energy spectra of the density fluctuations

more closely match the model spectrum. The transfer functions

represent a means to account for the differencing nature of FLDI

[1∕κ in Eq. (20)] as well as the response of the FLDI where the

disturbance wavenumber, beam size, and overlapping beam area all

are on the same order near the focus by introducing spectral compo-

nents (e.g., sin�κx�). In all cases, the inertial subrange is of the −5∕3
slope hypothesized by Kolmogorov. For idealized disturbance fields,

where the disturbance in space approaches the limit of infinitely small

fluctuations, of the form sin�κx�δ�z� or sin�κx� sin�κy�δ�z�, the cor-
rections yield an inertial subrange that is shortened by approximately

half a decade, resulting in the transition to the dissipation range

occurring earlier than expected when compared to the modeled

one-dimensional energy spectrum. When the disturbance field more

realistically occupies a physical length (2L or σ), the corrections by
the appropriate transfer functions broaden the inertial subrange. Due

to poor experimental design, the beginning of the dissipation range is

10-3 10-2 10-1 100
10-4

10-3

10-2

10-1

100

Fig. 6 Calculated transfer functions for an experiment with 0.5-arcmi-
nute Wollaston prism. Here, κ1 refers to the wavenumber of the stream-
wise fluctuations.

10-3 10-2 10-1 100
10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

Fig. 7 One-dimensional energy spectra of the density fluctuations for an
experiment performed with a round turbulent jet, corrected by transfer
functions for disturbance fields as labeled.

102 103 104 105 106
0

50

100

150

200
0.5 arcminute Wollaston prism
1 arcminute Wollaston prism
2 arcminute Wollaston prism

Fig. 5 Convective velocities and fits of dispersion relation for experi-
ments with 0.5-, 1-, and 2-arcminute Wollaston prisms.
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not visible for these spectra; a smaller FLDI beam intraspacingwould
be necessary to process the spectra beyond κ1η ≈ 0.1.

VII. Conclusions

In this work, a model of FLDI is derived by incorporating the local
intensity of each beam in an FLDI beam pair. The resulting transfer
functions represent a means to account for the differencing nature of
FLDI [1∕κ in Eq. (20)] as well as the response of the FLDI where the
disturbance wavenumber, beam size, and overlapping beam area all
are on the same order near the focus by introducing spectral compo-
nents (e.g., sin�κx�). This strategy enabled the rederivation of some
transfer functions to reduce FLDI data originally found in [49,50].
Additional transfer functions were derived for increasingly complex
disturbance fields that account for disturbances fluctuating not only
in the streamwise direction, x, but also the additional y and z direc-
tions, orthogonal to the flow. For the transfer functions derived for a
finite boundary,−L toL, it was identified that the length scale for the
∂ϕ∕∂x evaluation was a choice. That is, a strategic choice of the
integration limits for evaluating ∂ϕ∕∂x in the denominator of the
transfer function enabled the cancelation of LP when the transfer
function was applied, thus simplifying FLDI data reduction.
By performing experiments with a round, turbulent jet and reduc-

ing the data using the derived transfer functions, it was shown that
increasing the complexity of the transfer function has merit. When
the disturbance modeled by the transfer function better matches the
actual disturbance field, the results obtained from the FLDI system
more closely align with a well-established model and published data.
The best results were obtained when modeling the field to include
disturbances in x and y over a physical length scale in z, be it 2L or σ.
However, modeling the field to include disturbances in z resulted in a
transfer function that did not yieldmeaningful results,most likely due
to assumptions about the correlation of disturbances along that
integration direction. An alternate treatment where the disturbances
are considered in a statistical manner, perhaps a Gaussian random
field, could address this issue.
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